The Kernel-trace Approach to Right Congruences on an Inverse Semigroup

نویسندگان

  • MARIO PETRICH
  • STUART RANKIN
چکیده

A kernel-trace description of right congruences on an inverse semigroup is developed. It is shown that the trace mapping is a complete nhomomorphism but not a V-homomorphism. However, the trace classes are intervals in the complete lattice of right congruences. In contrast, each kernel class has a maximum element, namely the principal right congruence on the kernel, but in general there is no minimum element in a kernel class. The kernel mapping preserves neither intersections nor joins. The set of axioms presented in [7] for right kernel systems is reviewed. A new set of axioms is obtained as a consequence of the fact that a right congruence is the intersection of the principal right congruences on the idempotent classes. Finally, it is shown that even though a congruence on a regular semigroup is the intersection of the principal congruences on the idempotent classes, the situation is not the same for right congruences on a regular semigroup. Right congruences on a regular, even orthodox, semigroup are not, in general, determined by their idempotent classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences on Regular Semigroups

Let S be a regular semigroup and let p be a congruence relation on S. The kernel of p, in notation kerp, is the union of the idempotent p-classes. The trace of p, in notation trp, is the restriction of p to the set of idempotents of S. The pair (kerp,trp) is said to be the congruence pair associated with p. Congruence pairs can be characterized abstractly, and it turns out that a congruence is ...

متن کامل

SOME INTUITIONISTIC FUZZY CONGRUENCES

First, we introduce the concept of intuitionistic fuzzy group congruenceand we obtain the characterizations of intuitionistic fuzzy group congruenceson an inverse semigroup and a T^{*}-pure semigroup, respectively. Also,we study some properties of intuitionistic fuzzy group congruence. Next, weintroduce the notion of intuitionistic fuzzy semilattice congruence and we givethe characterization of...

متن کامل

Semigroups with inverse skeletons and Zappa-Sz$acute{rm e}$p products

The aim of this paper is to study semigroups possessing $E$-regular elements, where an element $a$ of a semigroup $S$ is {em $E$-regular} if $a$ has an inverse $a^circ$ such that $aa^circ,a^circ a$ lie in $ Esubseteq E(S)$. Where $S$ possesses `enough' (in a precisely defined way) $E$-regular elements, analogues of Green's lemmas and even of Green's theorem hold, where Green's relations ${mathc...

متن کامل

Fuzzy Regular Congruences on an E-Inversive E-Semigroup

In this paper, we introduce the definition of E-inversive E-semigroup with fuzzy φ-kernel normal systems. It is described that the fuzzy regular congruences on the E-inversive E-semigroup with fuzzy φ-kernel normal systems.

متن کامل

THE LATTICE OF CONGRUENCES ON A TERNARY SEMIGROUP

In this paper we investigate some properties of congruences on ternary semigroups. We also define the notion of congruence on a ternary semigroup generated by a relation and we determine the method of obtaining a congruence on a ternary semigroup T from a relation R on T. Furthermore we study the lattice of congruences on a ternary semigroup and we show that this lattice is not generally modular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009